
https://doi.org/10.1177/2515245917742982

Advances in Methods and
Practices in Psychological Science
﻿1–17
© The Author(s) 2018
Reprints and permissions:
sagepub.com/journalsPermissions.nav
DOI: 10.1177/2515245917742982
www.psychologicalscience.org/AMPPS

Tutorial

This Tutorial provides an update to the classic vignette
method by describing how to create iterative vignettes
using Twine (https://twinery.org/), a freely available
software platform. Vignettes, or hypothetical situations
used to elicit research participants’ feelings or percep-
tions, are widely employed across the subfields of psy-
chology to study a range of cognitions, emotions,
attitudes, and behaviors. In fact, a recent PsychInfo
search for “vignette” brought up 11,959 peer-reviewed
journal articles, more than the number of hits for most
other common methods, such as the Stroop task (6,175
articles) or the use of confederates (2,821 articles). Tra-
ditional vignette methods have key limitations that the
use of Twine can help overcome. Specifically, vignettes
typically involve a simple paragraph of text and thus
rarely involve choices that are informed by participants’
reactions to the vignettes. Consequently, participants
may not engage deeply with the text and may satisfice
when deciding on their responses (Stolte, 1994).

One methodological improvement to the vignette
method is the choose-your-own-adventure paradigm

(Green & Jenkins, 2014; Turan & Vicary, 2010; Vicary
& Fraley, 2007). However, most past work with this
paradigm has only presented the illusion of choice,
rather than involving true decisions that change the
course of the story (Turan & Vicary, 2010; Vicary &
Fraley, 2007). Using Twine, researchers are able to cre-
ate decision-making vignettes with iteration, so that
participants can both make decisions that affect later
outcomes and return to previous decision points to
select different alternatives. If participants make choices
that have an impact on the outcome of the story, they
may be more engaged and less likely to satisfice. Over-
all, by providing a way of observing participants as they
make more fine-tuned decisions based more firmly in
real-world situations (i.e., situations that change on the
basis of decisions made), Twine allows researchers to

742982 AMPXXX10.1177/2515245917742982Freedman et al.Vignettes in Twine
research-article2018

Corresponding Author:
Gili Freedman, Dartmouth College, Film & Media Studies, 22 Lebanon
St., 246 Black Family Visual Arts Center, Hanover, NH 03755
E-mail: gili.freedman@gmail.com

Updating a Classic: A New Generation of
Vignette Experiments Involving Iterative
Decision Making

Gili Freedman 1, Max Seidman1, Mary Flanagan1,
Melanie C. Green2, and Geoff Kaufman3

1Department of Film & Media Studies, Dartmouth College; 2Department of Communication,
University at Buffalo; and 3Human-Computer Interaction Institute, Carnegie Mellon University

Abstract
Although the vignette method is widely used in psychology, it is often implemented without the key feature of
iterative decision making that can affect the eventual outcome of the vignettes. This Tutorial provides an explanation
of how to use Twine, an interactive narrative platform, to create vignettes with iterative decision making. Twine is an
especially useful tool for experiments involving branching narratives, spatial navigation, and resource allocation. We
provide code for creating exemplar experiments in social and cognitive psychology, as well as behavioral economics,
and explain how to integrate Twine projects with survey-management platforms, such as Qualtrics. After following
this Tutorial, researchers will be able to use Twine in their experiments to update the classic vignette method by
incorporating iterative decision-making tasks.

Keywords
vignette, iterative, Twine, decision making, methods

Received 5/24/17; Revision accepted 10/27/17

https://twinery.org/
https://sagepub.com/journalsPermissions.nav
http://crossmark.crossref.org/dialog/?doi=10.1177%2F2515245917742982&domain=pdf&date_stamp=2018-01-22

2	 Freedman et al.

gain a richer, more nuanced data set about social, cog-
nitive, and behavioral economic processes. In this Tuto-
rial, we introduce Twine basics and then discuss three
experimental structures well suited to Twine (i.e.,
branching-narrative, spatial-navigation, and resource-
allocation structures).

Twine is a story-building tool in the choose-your-
own-adventure style. It was invented to enable nonex-
perts to quickly craft interactive texts, games, and
stories (Hudson, 2014). Even though Twine was created
as an interactive fiction platform, its functionality can
be employed for research purposes. This Tutorial will
familiarize you with how to create experiments in
Twine; the information provided will enable you to
incorporate this tool into your research immediately
and integrate Twine projects with a survey-management
platform to save participants’ data.1

Twine has four main advantages over survey soft-
ware for vignette experiments with iterative decision
making. As Qualtrics is a commonly used survey soft-
ware, we use it as a comparison case for Twine. First,
Twine is easier to use than Qualtrics for creating experi-
ments with complex branching logic. Although many
researchers are less familiar with Twine (see Fig. 1a)
than with Qualtrics (see Fig. 1b), the setup of Twine
makes branching more intuitive. Second, the Twine
editor is generally faster to use than the Qualtrics edi-
tor: Switching between passage editing and the project
view in Twine tends to be faster than switching between
the Survey Flow and the individual blocks in Qualtrics.
Third, Twine allows for types of iterative logic that
would not be possible in Qualtrics (and would be very
cumbersome and difficult or impossible on other plat-
forms). For example, in Twine, researchers can allow
participants to revisit the same decision point multiple
times (see the later examples of spatial-navigation and
resource-allocation scenarios), whereas in Qualtrics,
the Survey Flow cannot redirect participants back to
the same decision point. Finally, Twine can create more
engaging and intuitive iterative experiments. A key
asset of Twine is its responsiveness—that is, its ability
to adjust the display for different screen sizes, which is
especially important in the case of mobile devices. For
example, although Qualtrics surveys can be accessed
on mobile devices, their formatting often changes dras-
tically to accommodate the smaller screen size (e.g.,
radio buttons become drop-down lists). Twine changes
the sizes of elements but not the actual style of the
experiment when it is accessed on a mobile device.

Twine Basics

Twine, created by Chris Klimas, is an open-source tool
to make interactive fiction and has freely available

documentation (Arnott, 2017). Twine’s main functional-
ity facilitates creating hypertext branching narratives:
Players make a choice, and then, on the basis of that
choice, Twine takes them to another place in the story
with another choice. To access Twine, visit https://
twinery.org/ in your Web browser.2 You can choose to
work with Twine by using the online platform (click
on “Use it online”) or by downloading it; this Tutorial’s
instructions are based on the online version but are
applicable to either option.

To start a new project, click on the “+Story” button
and enter a project name. You will now see the story
screen for your Twine project (see Fig. 2).

Making your first passage

Twine projects are organized into units called passages.
Each of these passages is a page of text with choices
formatted as links to other passages, as in a flowchart.
Participants are presented the text from one passage,
and when they click on one of the choices in that pas-
sage, they are shown another passage.

Your new project has opened with one passage,
called Untitled Passage. Double-click on the Untitled
Passage box, and you will see a pop-up. At the top of
this pop-up, change the passage name to Passage1 (see
Fig. 3). The passage name is never shown to the par-
ticipant. We recommend that you avoid using spaces
or underscores in passage names because they can
make saving participants’ data more difficult in the
future. In addition, passage titles are case sensitive.

The large box below the passage name is where you
need to put the text of the vignette (see Fig. 3). Once
you have typed (or pasted) this text, including the
choice options, click the “x” button in the upper right
corner of the passage pop-up, and then click the “Play”
button in the bottom right of your window to preview
the project. When you preview your project, you will
see your passages as your participants would see them,
and once you have created links between them, you
will be able to click on those links and move between
the passages. At this point, you have just made a static
vignette that does not yet allow participants to make
any choices. Close the tab with your project preview.

Creating links to other passages

The next step for adding choices is to create the linked
passages that participants will encounter when they
click on a link in the first passage (also known as the
starting point). Suppose participants will choose from
two possibilities. Click on “+Passage” in the bottom
right corner and then double-click on the new passage.
Name your new passage and write the result of the

https://twinery.org/
https://twinery.org/

Vignettes in Twine	 3

(continued)

4	 Freedman et al.

Fig. 1.  Depiction of the difference between constructing a branching-logic experiment in Twine and constructing the same experiment in
Qualtrics. As illustrated in (a), the Twine editor clearly shows the participants’ progression from section to section. This progression is less
clear in the Qualtrics Survey Flow interface, as shown in (b).

Vignettes in Twine	 5

participant’s choice (see Fig. 4a). Close out of your
new passage. There will now be two passages on the
screen. It does not matter where they are sitting on the
screen, so feel free to move them to a logical layout.
Now make another result passage for the other option
(see Fig. 4b).

Now that you have a passage for each of the choices,
you must connect the choices in the first passage to the
result passages. To do this, double-click on your first
passage and edit the choices to look like this:

[[Take the bowl with
marshmallows.->Marshmallow]]

[[Take the bowl with grapes.->Grape]]

This is the simplest way to create links in Twine. The
text to the left of the “->” is what the participant will
see and have the option to select. The text to the right
is the exact name of the passage that will be displayed
once the participant clicks on that option. Note that a

Fig. 2.  The home screen for a new Twine project in the Twine editor. In this example, the experimenter has clicked
the menu triangle at the bottom left. The menu contains many useful options, including the ones used in this Tutorial:
Edit Story Stylesheet, Snap to Grid, and Publish to File.

Fig. 3.  The introduction passage in the example discussed in the Twine Basics section, as seen in the pas-
sage editor. Selecting the text at the top (“Passage1”) will allow the experimenter to change the name of the
passage (this name is for the experimenter’s reference and is not seen by participants). Clicking on the “x” in
the upper right corner will close the passage editor and return the experimenter to the project home screen.
Clicking on the main text area beneath the “+Tag” button will allow the experimenter to add text to be seen
by participants when they enter the passage (i.e., the description of the scenario and the choice options).

6	 Freedman et al.

passage name includes any spaces before or after the
letters in that name (e.g., “Grape” and “ Grape” would
refer to two different passages; see Fig. 5a for a com-
plete breakdown of the syntax).

Your project should now look like the diagram in
Figure 6. Click on the “Play” button again to preview
the project from the participant’s perspective.

Deleting the back arrow

Once you have clicked on a choice in your preview,
you might notice that there is a curved-arrow graphic
to the left of the text. This arrow allows participants to
undo their choices. In many experiments, this is not an
ideal feature to include. To remove this arrow, click the
triangle next to the name of your project at the bottom
left corner of the screen (see Fig. 2) and select “Edit
Story Stylesheet.” This will bring up a pop-up box. In
this box, type the following:

tw-sidebar {

  display: none;

}

If you test your project again, the curved arrow should
be gone. (The Twine Basics file in the Supplemental
Material available online also shows the final display
for this project.)

Saving your project

To avoid the possibility of losing your work or to edit
from multiple machines, download a backup of your
project. To do this, click on the triangle next to the
name of your project at the bottom left corner and
select “Publish to File” (in some browsers, you will need
to click “save” in the resulting pop-up). The .html file
that you just downloaded contains your project. To
preview your project, simply double-click on the file,
and the file will open in your default browser. To open
the file in a different browser, right-click on the file and
then click on “open with” and the browser’s name. Cur-
rently, Twine is supported on Chrome, Firefox, Opera,
Internet Explorer 8+, Safari 5.1+, and iOS Safari 6+. If
your file will not load in your chosen browser, check
your browser extensions to see if one is interfering with
the file. If you want to edit the project on a different
computer, you can load it by going to the screen listing
your stories, clicking “Import From File,” and browsing
for the .html file you downloaded. For example, you
could import the Twine Basics .html file from the Sup-
plemental Material using this method.

Three Experimental Structures

Three experimental structures that can be used across
most subfields of psychology are particularly well
suited to Twine: branching decision making, spatial

Fig. 4.  The two result passages for the example discussed in the Twine Basics section, as shown in the Twine project editor: (a) the passage
that appears if the participant chooses grapes and (b) the passage that appears if the participant chooses marshmallows.

Vignettes in Twine	 7

navigation, and resource allocation. For example,
research examining moral judgments, relationship deci-
sions, and impression formation can benefit from a
branching-narrative experimental structure in which
prior decisions affect future outcomes. Similarly,
researchers investigating memory, spatial navigation,

and cognitive maps could benefit from using a mazelike
experimental structure. Finally, research on economic
decision making, cooperation, and competition is likely
to be furthered through use of an iterative resource-
allocation experimental structure, in which participants
make a series of allocation decisions.

[[Take the bowl with marshmallows.->Marshmallow]]

Start a simple link

Text shown for the
participant to click

(i.e., the link)

Name of the passage
to open when the link

is clicked

End the linkArrow

a

b

c

(link: "Take the wallet home to your apartment.")[

(goto: "KeepWalletPositive")]

Start a (link:) macro

Text shown for the
participant to click

(i.e., the link)

Name of the passage
to open

End the (link:) macro

Macros contained
in the brackets are
executed when the

link is clicked
Start a (goto:) macro End the

(goto:) macro

Start an (if:) macro

Start a
(set:) macro

End the
(set:) macro

(if: $money >= $items's "Apples")[(replace: "Apples")[

(link: "Apples")[

(set: $purchasedItem to "Apples")(goto: "Shopping")]]]

If the variable called “money” is greater than
or equal to the value of “Apples” (in this case,

the price) in the datamap called “items”

End the (if:) macro

If the statement in the (if:) macro is
true, execute the macros
between these brackets

with the text/macros
in these brackets

Start a (replace:) macro

Replace “Apples”
 anywhere on the

page

Set the variable called
“purchasedItem”

to the phrase “Apples”

Fig. 5.  Descriptions of the syntax for code snippets used in this Tutorial. The code snippet from the example dis-
cussed in the Twine Basics section (a) shows how to write code that will create a simple link that, when clicked, will
direct the participant to another passage. The code snippet from the branching-narrative example (b) shows how to
create a link using a (link:) macro and a (goto:) macro. The code snippet from the resource-allocation example (c)
breaks down a segment of code that will allow an experimenter to set up a system in which participants can buy only
items that they can afford; this is accomplished by converting those items’ names to links using a (replace:) macro.

8	 Freedman et al.

Branching narratives

Branching narratives are likely to be particularly useful
in studying social judgments, such as attributions, per-
son perception, and impression formation, which are
subject to revision and revisiting over time (e.g., with
the acquisition of new information or with subsequent
interactions). The project we described in the Twine
Basics section is a rudimentary branching narrative.
That simple branching narrative is one that many
researchers would already be able to make using survey
software; however, creating this type of experiment is
much quicker and easier with Twine than with survey

systems. As Figure 1 illustrates, Twine provides a much
more intuitive branching scheme.

In this section, we cover a more advanced branching
narrative with the addition of random assignment to
condition. The goal of this experiment is to examine
the impact of feedback on the process of moral licens-
ing (i.e., feeling more comfortable behaving immorally
after having just behaved morally; Monin & Miller,
2001): Are individuals less likely to engage in moral
licensing if they are provided with negative feedback
for their actions?

To begin, start a new project by clicking on the home
button, creating a new project, and naming it “Branch-
ing Narrative.” In this project, create eight passages as
arranged in Figure 1a. The top passage will be the start
of your narrative (Introduction). It sets up the moral
dilemma of finding a wallet while walking on a city
street (Fig. 7).

As with the previous example, you will fill in the
other passages with your chosen text. In this case, the
four passages directly below the Introduction passage
will be assigned to participants on the basis of their
decisions plus a randomization factor. If, for example,
participants choose to keep the wallet, they will be
randomly assigned to one of the two KeepWallet pas-
sages. If they choose to return it, they will be randomly
assigned to one of the two ReturnWallet passages.

To randomly assign the outcome of clicking on a
link, you will use one of the alternate forms of linking
that Twine provides via macros that can alter a project’s
overall state (see Table 1 for a list of useful Twine
macros). Twine’s (link:) macro is a command that can
work just like a regular link, as in the following exam-
ple (see Fig. 5b for a breakdown of the syntax):

(link: "Take the wallet home to your apartment.")
[(goto: "KeepWalletPositive")]

Fig. 6.  The structure for the example discussed in the Twine Basics
section, as shown in the project home screen. The green-rocket-ship
icon indicates that Passage1 is the first passage that a participant will
see. In this example, the arrows from Passage1 to the Grape and
Marshmallow passages indicate that Passage1 contains links that the
participant can use to go to either of those passages.

Fig. 7.  The Introduction passage for the moral dilemma in the branching-narrative example, as seen in the
Twine editor screen.

Vignettes in Twine	 9

Table 1.  Twine Macros and Code With Examples and Descriptions

Macro (base
syntax) or code Example Description

(set:) (set: $money to 10)
(set: $phrase to "I know what
you did")

This macro gives a value to a variable that can be accessed
later. If the variable does not exist, it is created; otherwise,
its value is overwritten. The word following the dollar sign
is the variable name. The value following “to” is what the
variable is being set to.

(link:)[] There is a (link: "chair.")
[chair bolted to the floor.]
(link: "Take the $20 bill")
[(set: $money to 20)(goto:
"nextPassage")]

This macro shows the text after the colon as a clickable
link. When participants click on the link, Twine removes
the link text and then inserts any text or executes any
macros between the brackets.

(either:) (set: $condition to (either: 1,
2))
The coin flip landed on (either:
"heads", "heads", "heads",
"tails")

This macro randomly chooses one of the things after the
colon. It can be combined with the (set:) macro to set a
variable randomly. An element in the list can be repeated
to change the probability of its occurrence. In the coin-
flip example, the coin will land on heads 75% of the time
because three of the four elements shown are “heads.”

(replace:)[] (replace: "this data")[these
data]

This macro replaces instances of the text following the
colon with the text between the brackets.

(display:) (display: "Passage2") This macro displays all of the text (and macros) of another
passage within the passage in which the (display:) macro
is used. The text after the colon specifies the name of the
passage that will be displayed.

(if:)[] (if: $money > 10)[Wow, you have
a lot of money.]

This macro tells Twine to display the text or execute the
macro inside the brackets if the expression after the colon
is true.

(font:)[] (font: "Arial")[This text is in
Arial]

This macro tells Twine to display the text between the
brackets in the font that appears after the colon.

(text-style:)[] (text-style: "Bold")[This text
is bold]
(text-style: "Blur")[This text
is blurry]

This macro tells Twine to display the text between the
brackets in the style that appears after the colon.

(history:) The previous passages are
(history:)

This macro creates an array of the names of the passages
the player has visited.

time (link: "Next")[(set:
$timeOnPassage to time) (goto:
"nextPassage")]

This keyword creates the number of milliseconds since the
player arrived at this passage. It can be combined with a
(link:) macro to see how long a player takes to make a
choice.

(array:) (set: $inventory to (array:
"Banana", "Apple", "Soda"))
(set: $inventory to it + (array:
"Chips", "Ice Cream"))

This macro creates a list of words or numbers. It can be
stored in a variable. You can add additional elements to it
by using “+.” In the second example, the $inventory array
created by the first example is extended by adding a new
array (using “+”) to the existing array (“it”).

(datamap:) (set: $menu to (datamap: "Lobster",
"$25", "Pasta", "$12"))
(set: $lobsterPrice to $menu's
"Lobster")
Lobster costs $lobsterPrice

This macro creates a list of words, each with a value. For
example, it can create a list of items and their prices.
Values can be accessed by using datamap’s “itemName”
expression. The first part of the example code creates a
datamap with a list of items and their prices and stores it
in a variable called “menu.” The second and third parts of
the code show how to retrieve a value from the datamap
(in this case, the price of the item called “Lobster”) and
then display that value.

 <img src="http://www.tiltfactor.
org/wp-content/uploads/2017/06/
bookshelf.png"/>

This HTML code tells Twine to display the image from the
URL between the quotation marks.

10	 Freedman et al.

This code uses two Twine macros. The (link:) macro
tells Twine that you want linked text to appear in your
passage. The “Take the wallet home to your
apartment.” text tells Twine the selection of text that
you want to turn into a link. Whatever lies in the brack-
ets following the (link:) macro tells Twine what to
do when a participant clicks on the link. In this case,
the (goto:) macro tells Twine to open a new passage.
In summary, the Twine code here ends up doing
exactly the same thing as if you had typed “[[Take
the wallet home to your apartment.->
KeepWalletPositive]].”

You are using the (link:) macro because you do not
just want a particular passage to open when the par-
ticipant clicks on the link; you want one of two pas-
sages to open randomly. To achieve this, you will use
the (either:) macro. This macro randomly chooses one
element out of a list. Replace the choices in the Intro-
duction passage as follows:

(link: "Bring the wallet to the police
station ten blocks away.")[(goto:
(either: "ReturnWalletPositive",
"ReturnWalletNegative"))]
(link: "Take the wallet home to your
apartment.")[(goto: (either:
"KeepWalletPositive",
"KeepWalletNegative"))]

In each of these cases, when the user clicks on the link,
the (either:) macro will randomly choose one of the two
passages to send the user to. This macro can choose one
condition from any number of conditions that it is pro-
vided with (i.e., it can be used for more than two condi-
tions). In the current example, participants who choose
to keep the wallet will be randomly assigned to receive
either positive or negative feedback associated with keep
ing it, and participants who choose to return the wallet
will be randomly assigned to receive either positive or
negative feedback associated with returning it. Next, you
will need to insert a link to the second decision passage
(Decision2) in each KeepWallet and ReturnWallet pas-
sage. The link, [[Next->Decision2]], will allow
participants to click on “Next” to move to the following
passage. Finally, you will need to link your second deci-
sion passage to your final outcome passages. In this case,
the outcomes are dependent on the decision. You have
now made a branching narrative that can test the impact
of feedback on moral licensing. (See the Branching Nar-
rative file in the Supplemental Material to view the final
project as it will appear to participants.)

Spatial navigation

In this section, we go beyond creating a branching
narrative and describe an experiment that uses a

spatial-navigation structure to create a maze in Twine.
Researchers studying memory, perception, and atten-
tion processes related to spatial navigation may find
Twine useful for creating these spatial experimental
structures. To demonstrate how such a structure might
be implemented in Twine, we discuss an example
showing how to use Twine to measure memory, mental
representations, and cognitive mapping by asking par-
ticipants to reconstruct a maze from memory. In this
experiment, participants will view a series of passages
in which they make a choice about which direction to
take. Much as if they were truly inside a maze, they will
never see the top-down view.

Start by creating the structure for your maze. Create
nine passages arranged in three rows of three passages
each (see Fig. 8). The blocks can be aligned by clicking
on the menu triangle at the bottom left of the screen
(see Fig. 2) and clicking on “Snap to Grid.” Name each
passage with a number and a letter (e.g., A1), as on a
chessboard.

Begin by adding the possible directions to each
passage:

Roads lead to the [[north->]],
[[south->]], [[east->]], and [[west->]].

After each “->,” put the name of the destination pas-
sage (see Fig. 9). Keep in mind that when building a
maze, you do not want each destination option in
every passage. For example, if a passage has walls to
the north, west, and east, only a road to the south is
possible. Therefore, only that option should be pre-
sented, or, alternatively, you can leave in the links to
the other directions but not link them to any passages,
which will result in participants seeing grayed-out
choices in those directions. In other words, if the code
includes “[[north->]],” “north” will be grayed out
in participants’ view, whereas if the code includes
“[[north->A1]],” participants will be able to click
on that link and will then be taken to the A1
passage.

As mentioned earlier, a key advantage of Twine
over Qualtrics is the more immersive nature of experi-
ments presented in Twine. For instance, the spatial-
navigation scenario when presented in Twine can feel
more like a narrative participants are exploring than
like a survey they are completing, as the scenario
might be experienced with the Qualtrics interface (see
Fig. 10).

Background and text color.  For this project, suppose
you want a white background. To change the back-
ground color,3 you will edit the Story Stylesheet (the
same place where you took away the back arrow) by
adding the following:

Vignettes in Twine	 11

tw-story {
    background-color: #FFFFFF;
}

To make the text black, add the following text:

body, tw-story{
     color: #000000;
}

Images.  Each passage will contain one image and a
line of text describing the image, in addition to the line
of text that describes the pathways (“Roads lead. . . .”).
An image must be hosted on the Internet if it is going to
be put in a Twine story. Although one can incorporate
almost any image on the Internet into a Twine project,

we recommend that you have the proper permissions to
use any images included in your project. We also recom-
mend that you download each image and host it your-
self, so that if the original host deletes the image, your
study will still function. We have hosted the images for
this spatial-navigation example on our lab’s Web site
(see Table 2), but images can easily be uploaded to free
image-hosting sites, such as Imgur.com.

Twine uses HTML code to insert images into a pas-
sage. For example, the following code would be used
to insert the picture of the gate in one of the passages
in the spatial-navigation example:

<img src="http://www.tiltfactor.org/wp-
content/uploads/2017/06/gate.png"/>

Fig. 8.  The experimental structure for the spatial-navigation example discussed in the text.

Fig. 9.  A passage from the spatial-navigation example, as seen in the Twine editor. This passage includes four
links to other passages. In the participant’s view, this passage will read, “Roads lead to the north, south, east, and
west,” and the words “north,” “south,” “east,” and “west” will be clickable (blue, underlined) HTML links. In the
Twine editor, brackets, arrows, and names of linked passages are shown in blue to indicate that they are code
and will not appear in the text presented to participants.

12	 Freedman et al.

Table 2.  Images Used in the Spatial-Navigation Example

Image Name Link

Bookshelf http://www.tiltfactor.org/wp-content/uploads/2017/06/bookshelf.png

Car http://www.tiltfactor.org/wp-content/uploads/2017/06/car.png

Door http://www.tiltfactor.org/wp-content/uploads/2017/06/door.png

Fountain http://www.tiltfactor.org/wp-content/uploads/2017/06/fountain.png

Gate http://www.tiltfactor.org/wp-content/uploads/2017/06/gate.png

Graffiti http://www.tiltfactor.org/wp-content/uploads/2017/06/graffiti.png

Hole http://www.tiltfactor.org/wp-content/uploads/2017/06/hole.png

Tent http://www.tiltfactor.org/wp-content/uploads/2017/06/tent.png

Wrestling http://www.tiltfactor.org/wp-content/uploads/2017/06/wrestling.png

Note: These images can be included in Twine projects by using the code (see Table 1).

Fig. 10.  Comparison of displays in Twine and Qualtrics. The image in (a) shows participants’ view of a passage in the spatial-navigation
example, and the image in (b) shows the equivalent view if the scenario were created in Qualtrics.

Vignettes in Twine	 13

To use a different image, simply replace the URL in
quotes with your image’s URL. (See the Spatial Naviga-
tion file in the Supplemental Material to view the final
project as it will appear to participants.)

Resource allocation

Resource-allocation experiments in Twine are likely to
be valuable for research on behavioral economics top-
ics, including experiments using framing, negotiations,
and social-dilemma or game-theory tasks.4 Imagine an
experiment examining the psychological impact of scar-
city on shopping behavior in adolescents. In this exam-
ple experiment, participants are going shopping and
have either the same amount of money as a friend or
less money than the friend (i.e., a manipulation of rela-
tive scarcity). You will measure what items participants
choose to buy and whether that is affected by relative
scarcity. To begin, set up your structure: an introductory
passage (Introduction, including the introductory text
that sets up the scenario), a shopping passage (Shop-
ping), and an end passage (End; see Fig. 11).

Next, provide participants with an initial amount of
money. Use the following code at the top of the Intro-
duction passage:

(set: $money to 10)

This code creates a variable called “money” and sets it
to 10. Then, you want to randomly assign how much
money participants’ friends have to spend using the
(either:) macro:

(set: $friendmoney to (either: 10, 20))

This code creates a variable called “friendmoney” and
randomly sets it to either 10 or 20. You want to tell the
participants how much money both they and their
friends have, so in the Introduction, after these two lines
of code, type “You have $$money to spend and
your friend has $$friendmoney” (see Fig. 12).

Finally, add a link to the empty Shopping passage
and preview the project; note that including the

Fig. 11.  The experimental structure for the resource-allocation
example discussed in the text.

Fig. 12.  A passage from the resource-allocation example, as seen in the Twine editor. This passage shows how to
set variables to fixed numbers using the (set:) macro, set variables to random numbers using the (either:) macro,
and display those variables to participants.

14	 Freedman et al.

variables in the text for the passage results in their
values being displayed to participants.

Using datamaps.  Datamaps in Twine (known as asso-
ciative arrays in computer science) are special kinds of
variables that store a list of items and a piece of data
about each one. You are going to use a datamap to store
the list of items available for purchase and their prices
(ranging from $1 to $4).

In the Introduction passage, create a new variable
called “items,” and set it to a datamap that includes each
object, followed by its price:

(set: $items to (datamap:
	 "Item", "Price",
	 "Apples", 3,
	 "Carrots", 4,
	 "Kale", 2,
	 "Bananas", 2,
	 "Ice Cream", 4,
	 "Chocolate", 3,
	 "Soda", 1,
	 "Chips", 2,
))

In the Shopping passage, you first want to tell participants
how much money they have by typing “You have
$$money left.” Next, you want to show participants
a list of the items they can purchase by clicking links on
the screen. To do this, type the following:

You can buy:
(print: $items)

Now preview the project to see the display partici-
pants see when you use the (print:) macro on your
datamap. You want participants to be able to click on
the various items to buy them. To do this, use the
(replace:) macro to replace the item names with links,
as in the following example for apples (see Fig. 5c for
a breakdown of the syntax):

(if: $money >= $items's "Apples")
[(replace: "Apples")[(link: "Apples")
[(set: $purchasedItem to "Apples")
(goto: "Shopping")]]]

The first portion of this code, “(if: $money >=
$items's "Apples"),” says to execute the code in
the following brackets only if the participant can afford
the apples; the code $items's "Apples" tells
Twine to look up the price of “Apples” in the $items
datamap. The next portion, “(replace: "Apples"),”
replaces all instances of “Apples” in the passage with

whatever is in the brackets. In the brackets is a link
that when clicked sets a variable called “purchasedItem”
to “Apples” and then reloads the Shopping passage
again. You will want to add corresponding code for
every item. For example, the code for carrots would be
the following:

(if: $money >= $items's "Carrots")
[(replace: "Carrots")[(link: "Carrots")
[(set: $purchasedItem to "Carrots")
(goto: "Shopping")]]]

At this point, a participant could click on each item,
but nothing visible would happen yet. The next step is
to reduce a participant’s overall amount of money
according to what he or she buys, by typing this code
at the top5 of Shopping:

(if: $purchasedItem is not 0)[(set: $money
to it - $items's $purchasedItem)]

This code first checks to see if the participant pur-
chased anything. If the participant did, the code using
the “it” keyword, which represents the referenced vari-
able's current value, indicates that the value of the
$money variable is calculated by subtracting the pur-
chased item's cost from the current value.

Next, you want to record what the participant bought.
In Introduction, create an empty list to put the items
purchased: (set: $purchasedItems to ""). This
creates a variable called “purchasedItems” and sets it to
nothing. So that items will be added when purchased,
add the following code to the top of Shopping (i.e.,
above all the other text in that passage):

(if: $purchasedItem is not 0)[(unless:
$purchasedItems is "")[(set:
$purchasedItems to it + ", ")](set:
$purchasedItems to it + $purchasedItem)]

This code uses the (unless:) macro, which is the oppo-
site of an (if:) macro, to check to see if the participant
has purchased an item yet. If he or she has purchased
an item before, the code adds a comma to the $pur-
chasedItems list before adding the purchased item to
the list. If the participant has not yet purchased an item,
the (unless:) macro skips adding the comma. Note that
the items purchased will be stored in chronological
order.

Finally, you will need to add a link to the End pas-
sage so that the experiment stops when the participant
runs out of money or chooses to stop. At the bottom
of Shopping, type the following code: [[I’m done
shopping->End]]. In End, put the following code:

Vignettes in Twine	 15

You had $$money left over, and you
bought: $purchasedItems

Preview the project, and you will see that the End pas-
sage shows what the participant purchased.

Formatting passages.  When you preview your proj-
ect, you may notice that there is extra white space above
and below your text. This is because each line of code
creates a blank line in the passage. If you want to delete
the blank lines, you can put curly braces (i.e., {}) around
the code, and they will disappear.

Saving data.  It will be important for you to be able to
save the choices participants make for future analysis.
Twine’s software is robust enough to be able to access
many variables, including choices participants make, the
time they spend per passage, and randomly generated
variables (e.g., condition assignment). However, these
data are not automatically saved because unlike experi-
ments run with traditional survey software, Twine proj-
ects run on the computer of the user and are not directly
connected to a database. Fortunately, Twine can easily
send any variable it can access to survey software (e.g.,
Qualtrics) in order to be saved online. The Twine data
thus saved can be exported as a .csv file, in the same way
as any other survey data.

In order to send Twine variables to other software
for saving, one appends them to a survey link using
query strings that transmit the variables to the survey,
which then saves them in the embedded data when the
participant clicks on a link that uses the (goto-url:)
macro, a macro that opens a link to an external Web
site (in this case, the Qualtrics survey). Query strings
are parameters that are added to the end of a URL; they
do not change the Web page the URL directs to but
provide certain data that the Web page can access. The
basic format for a query string is “variable name = vari-
able value.” In the case of a survey question in Qual-
trics, “variable name” would be the question name (i.e.,
the column title in the .csv data file), and “variable
value” would be the data in that column for that par-
ticipant. You can send any number of query strings,
using an ampersand to separate each additional one
from the preceding one. Note that the first query string
must be separated from the URL with a question mark.
For example, if you had three variables (variable1, vari-
able2, and variable3) and your survey URL was https://
d a r t m o u t h . c o 1 . q u a l t r i c s . c o m / j f e / f o r m /
SV_2tRPzlsowvh2bpX, the (goto-url:) code would be
the following:

(goto-url: "https://dartmouth.co1.
qualtrics.com/jfe/form/SV_2tRPzlsowvh2
bpX?variable1=variable1Value&variable2

=variable2Value&variable3=variable3Va
lue")

Here is an example of a possible survey link in the
resource-allocation scenario:

https://dartmouth.co1.qualtrics.com/
jfe/form/SV_2tRPzlsowvh2bpX?friendmone
y=10&action1=Carrots&action2=Apples

We now explain how to write code that automatically
generates such a URL. Suppose that you want to save
the order in which items were purchased. You will need
to create a survey in a survey-management system,
which will be used to hold the data for the interactive
vignette. Here, we provide instructions for using Qual-
trics for this purpose; however, you can also use other
survey-management software (e.g., SurveyMonkey).6
Your Qualtrics survey does not need to contain ques-
tions. Click the “Survey Flow” button at the top and then
click “Add a New Element Here,” followed by “Embed-
ded Data.” In the new Embedded Data section, create
11 fields to store the friend’s money (“friendmoney”)
and the maximum number of items the participant could
buy (“action1,” “action2,” . . . “action10”). Leave the val-
ues blank (i.e., do not click on “Set Value Now”) and
click on “Save Flow.” Then copy the anonymous link to
your survey from the Qualtrics Distribution tab.

At the top of the Introduction passage of the Twine
project, set a new variable by typing “(set:
$surveyLink to ""),” and then paste your survey
link between the quotes. Also in Introduction, create a
second variable by typing “(set: $numPurchased
to 0) .” To record condition, add that to the
survey link: “(set: $surveyLink to it +
"?friendmoney=" + (text:$friendmoney)).”

Next, you have to add the items purchased to the
survey link, just as the condition was added. Do this
by adding the following code to the top of Shopping:

(if: $purchasedItem is not 0)[(set:
$numPurchased to it + 1)(set:
$surveyLink to it + "&action" + (text:
$numPurchased) + "=" + $purchasedItem)]

This code will record the items purchased as well as
the order in which they were purchased.

The last step is to send this information to Qualtrics.
This is done by adding an external link to Qualtrics at
the bottom of the End passage:

(link: "Please take a quick survey.")
[(goto-url: $surveyLink)]

When you preview your project, you will find that the
only change is that a link labeled “Please take a quick
survey” has been added to the End passage (the

https://dartmouth.co1.qualtrics.com/jfe/form/SV_2tRPzlsowvh2bpX
https://dartmouth.co1.qualtrics.com/jfe/form/SV_2tRPzlsowvh2bpX
https://dartmouth.co1.qualtrics.com/jfe/form/SV_2tRPzlsowvh2bpX
https://dartmouth.co1.qualtrics.com/jfe/form/SV_2tRPzlsowvh2bpX?variable1=variable1Value&variable2=variable2Value&variable3=variable3Value
https://dartmouth.co1.qualtrics.com/jfe/form/SV_2tRPzlsowvh2bpX?variable1=variable1Value&variable2=variable2Value&variable3=variable3Value
https://dartmouth.co1.qualtrics.com/jfe/form/SV_2tRPzlsowvh2bpX?variable1=variable1Value&variable2=variable2Value&variable3=variable3Value
https://dartmouth.co1.qualtrics.com/jfe/form/SV_2tRPzlsowvh2bpX?variable1=variable1Value&variable2=variable2Value&variable3=variable3Value
https://dartmouth.co1.qualtrics.com/jfe/form/SV_2tRPzlsowvh2bpX?variable1=variable1Value&variable2=variable2Value&variable3=variable3Value
https://dartmouth.co1.qualtrics.com/jfe/form/SV_2tRPzlsowvh2bpX?friendmoney=10&action1=Carrots&action2=Apples
https://dartmouth.co1.qualtrics.com/jfe/form/SV_2tRPzlsowvh2bpX?friendmoney=10&action1=Carrots&action2=Apples
https://dartmouth.co1.qualtrics.com/jfe/form/SV_2tRPzlsowvh2bpX?friendmoney=10&action1=Carrots&action2=Apples

16	 Freedman et al.

Resource Allocation file in the Supplemental Material
shows the final display for this project). When partici-
pants click on the survey link, your survey will record
the items the participants purchased as if they were
answers to survey questions (see Fig. 13). As with any
study, we recommend that you test your project to make
sure variables are being saved properly before begin-
ning your data collection. Remember to put the final
parts of your experiment in the survey. For example,
demographic questions can be asked in the same sur-
vey that collects the Twine data.

Summary

In this Tutorial, we have described how to use Twine
to set up a range of psychological experiments involv-
ing iterative decision making. In addition to outlining
the basics of Twine, we have described how to imple-
ment three main structures that can be used for experi-
ments in different areas of psychology and how to
change display characteristics (e.g., background and
text color), add images, incorporate random assignment

into experiments, and save data. By using this Tutorial,
researchers can begin to incorporate Twine into their
vignette studies and update a classic method with new
and extended capabilities and functionalities.

Action Editor

Michael Inzlicht served as action editor for this article.

Author Contributions

G. Freedman and M. Seidman jointly wrote the manuscript.
M. Flanagan, G. Kaufman, and M. C. Green critically edited
it. All the authors approved the final version of the manuscript
for submission.

ORCID iD

Gili Freedman https://orcid.org/0000-0002-7006-9674

Declaration of Conflicting Interests

The author(s) declared that there were no conflicts of interest
with respect to the authorship or the publication of this
article.

Fig. 13.  Example of a final display in the resource-allocation experiment and the corresponding data as displayed in
the Data & Analysis tab in Qualtrics. At the end of the experiment (a), the participant sees the amount of money left
over, the items he or she bought, and a link to the survey that will save the data and allow the participant to complete
the experiment. In the Qualtrics display (b), “friendmoney” refers to the randomly assigned condition. In this example,
the participant was assigned to the condition in which the friend had $10. The data for the actions (action1, action2,
action3) show that the participant first bought apples, then bought kale, and finally bought chocolate.

https://orcid.org/0000-0002-7006-9674

Vignettes in Twine	 17

Funding

This work was supported by the National Science Foundation
(Grants DRL-1420036 and 1462063).

Supplemental Material	

Additional supporting information can be found at http://
journals.sagepub.com/doi/suppl/10.1177/2515245917742982

Notes

1. Additional help in using Twine can be obtained through forum
discussions at https://twinery.org/forum/categories/help-with-2-0.
2. The examples in this Tutorial were created using Twine
Version 2.1.3. Syntax and interfaces may have changed since
the time this manuscript was written.
3. The stylesheet uses hexadecimal color codes (e.g., “FFFFFF”
is white). To get the hexadecimal code for any color, use this
tool: https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_
Colors/Color_picker_tool.
4. Although it would be possible to create this resource-alloca-
tion example in Qualtrics, it would be a cumbersome endeavor.
For instance, the participant is given $10 to spend, and the
cheapest item is $1. To create this situation in Qualtrics, a
researcher would have to make a multiple-choice block and
copy it 10 times (the maximum number of purchases). In addi-
tion, logic would have to be inserted to decrease participants’
money when they make purchases, to no longer permit partici-
pants to buy things they cannot afford, and to end the survey
early when participants run out of money.
5. The order in which you write text in a passage is important.
The program runs code starting from the top of the passage and
going down. Thus, to update the amount of money left following

a purchase before participants have the ability to buy anything
new, you need to put that code at the top of the passage, before
any other code attempts to use the $money variable.
6. For documentation on using SurveyMonkey for data saving, see
https://help.surveymonkey.com/articles/en_US/kb/What-are-
custom-variables-and-how-do-I-use-them.

References

Arnott, L. (2017). Harlowe 2.0.1 manual. Retrieved from
https://twine2.neocities.org/

Green, M. C., & Jenkins, K. M. (2014). Interactive narra-
tives: Processes and outcomes in user-directed stories.
Journal of Communication, 64, 479–500. doi:10.1111/
jcom.12093

Hudson, L. (2014, November 19). Twine, the video-game tech-
nology for all. The New York Times Magazine. Retrieved
from https://www.nytimes.com/2014/11/23/magazine/
twine-the-video-game-technology-for-all.html

Monin, B., & Miller, D. T. (2001). Moral credentials and the
expression of prejudice. Journal of Personality and Social
Psychology, 81, 33–43. doi:10.1037//0022-3514.8I.I.33

Stolte, J. F. (1994). The context of satisficing in vignette
research. The Journal of Social Psychology, 134, 727–733.

Turan, B., & Vicary, A. M. (2010). Who recognizes and
chooses behaviors that are best for a relationship? The
separate roles of knowledge, attachment, and motivation.
Personality and Social Psychology Bulletin, 36, 119–131.
doi:10.1177/0146167209349374

Vicary, A. M., & Fraley, R. C. (2007). Choose your own adven-
ture: Attachment dynamics in a simulated relationship.
Personality and Social Psychology Bulletin, 33, 1279–1291.
doi:10.1177/0146167207303013

https://twinery.org/forum/categories/help-with-2-0
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_
Colors/Color_picker_tool
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_
Colors/Color_picker_tool
https://twine2.neocities.org/
https://www.nytimes.com/2014/11/23/magazine/twine-the-video-game-technology-for-all.html
https://www.nytimes.com/2014/11/23/magazine/twine-the-video-game-technology-for-all.html

